[ad_1]

  • Ferrari, A. J. et al. The prevalence and burden of bipolar disorder: findings from the Global Burden of Disease Study 2013. Bipolar Disord. 18, 440–450 (2016).

    PubMed 

    Google Scholar
     

  • Polderman, T. J. C. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47, 702–709 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brainstorm Consortium. et al. Analysis of shared heritability in common disorders of the brain. Science 360, eaap8757 (2018).


    Google Scholar
     

  • Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology.Nat. Genet. 53, 817–829 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Charney, A. W. et al. Contribution of rare copy number variants to bipolar disorder risk is limited to schizoaffective cases. Biol. Psychiatry 86, 110–119 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Ganna, A. et al. Quantifying the impact of rare and ultra-rare coding variation across the phenotypic spectrum. Am. J. Hum. Genet. 102, 1204–1211 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • J., A., Crow, J. F. & Kimura, M. An introduction to population genetics theory. Popul. (Fr. Ed.). 26, 977 (1971).


    Google Scholar
     

  • Kryukov, G. V., Pennacchio, L. A. & Sunyaev, S. R. Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am. J. Hum. Genet. 80, 727–739 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Power, R. A. et al. Fecundity of patients with schizophrenia, autism, bipolar disorder, depression, anorexia nervosa, or substance abuse vs their unaffected siblings. JAMA Psychiatry 70, 22–30 (2013).

    PubMed 

    Google Scholar
     

  • American Psychiatric Association, Task Force on DSM-IV. DSM-IV Sourcebook (American Psychiatric Publishing, 1998).

  • Janca, A., Ustün, T. B., Early, T. S. & Sartorius, N. The ICD-10 symptom checklist: a companion to the ICD-10 classification of mental and behavioural disorders. Soc. Psychiatry Psychiatr. Epidemiol. 28, 239–242 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Malaspina, D. et al. Schizoaffective disorder in the DSM-5. Schizophr. Res. 150, 21–25 (2013).

    PubMed 

    Google Scholar
     

  • O’Connell, K. S. & Coombes, B. J. Genetic contributions to bipolar disorder: current status and future directions.Psychol. Med. 51, 2156–2167 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (American Psychiatric Publishing, 2013).

  • Husson, T. et al. Identification of potential genetic risk factors for bipolar disorder by whole-exome sequencing. Transl. Psychiatry 8, 268 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sul, J. H. et al. Contribution of common and rare variants to bipolar disorder susceptibility in extended pedigrees from population isolates. Transl. Psychiatry 10, 74 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, X. et al. Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder. Mol. Psychiatry 26, 5239–5250 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cruceanu, C. et al. Rare susceptibility variants for bipolar disorder suggest a role for G protein-coupled receptors. Mol. Psychiatry 23, 2050–2056 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Genovese, G. et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat. Neurosci. 19, 1433–1441 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, T. et al. The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nat. Genet. 49, 1167–1173 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature https://doi.org/10.1038/s41586-022-04556-w (2022).

  • Samocha, K. E., Kosmicki, J. A. & Karczewski, K. J. Regional missense constraint improves variant deleteriousness prediction. Preprint at bioRxiv https://doi.org/10.1101/148353 (2017).

  • Aguet, F. et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    CAS 

    Google Scholar
     

  • Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hibar, D. P. et al. Subcortical volumetric abnormalities in bipolar disorder. Mol. Psychiatry 21, 1710–1716 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganna, A. et al. Ultra-rare disruptive and damaging mutations influence educational attainment in the general population. Nat. Neurosci. 19, 1563–1565 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cotney, J. et al. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nat. Commun. 6, 6404 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Weyn-Vanhentenryck, S. M. et al. HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Rep. 6, 1139–1152 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium & Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell 173, 1705–1715 (2018).

  • Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature https://doi.org/10.1038/s41586-022-04434-5 (2022).

  • Freland, L. & Beaulieu, J.-M. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front. Mol. Neurosci. 5, 14 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kishore, B. K. & Ecelbarger, C. M. Lithium: a versatile tool for understanding renal physiology. Am. J. Physiol. Ren. Physiol. 304, F1139–F1149 (2013).

    CAS 

    Google Scholar
     

  • Jope, R. S. Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol. Sci. 24, 441–443 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of Autism. Cell 180, 568–584.e23 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satterstrom, F. K. et al. Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants. Nat. Neurosci. 22, 1961–1965 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Epi25 Collaborative. Ultra-rare genetic variation in the epilepsies: a whole-exome sequencing study of 17,606 individuals. Am. J. Hum. Genet. 105, 267–282 (2019).

  • Firth, H. V. et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources. Am. J. Hum. Genet. 84, 524–533 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanji, C. et al. A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3beta (GSK-3beta) and mediates protein kinase A-dependent inhibition of GSK-3beta. J. Biol. Chem. 277, 36955–36961 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Beurel, E., Grieco, S. F. & Jope, R. S. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol. Ther. 148, 114–131 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Howrigan, D. P. et al. Exome sequencing in schizophrenia-affected parent-offspring trios reveals risk conferred by protein-coding de novo mutations. Nat. Neurosci. 23, 185–193 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).


    Google Scholar
     

  • Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinforma. 43, 11.10.1–11.10.33 (2013).


    Google Scholar
     

  • DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng, P. C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–D894 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C.-Y. et al. Genetic validation of bipolar disorder identified by automated phenotyping using electronic health records. Transl. Psychiatry 8, 86 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, S. et al. Instrumenting the health care enterprise for discovery research in the genomic era. Genome Res. 19, 1675–1681 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wing, J. SCAN (Schedules for Clinical Assessment in Neuropsychiatry) and the PSE (Present State Examination) Tradition. Mental Health Outcome Measures 123–130 (Springer, 1996).

  • McGuffin, P., Farmer, A. & Harvey, I. A polydiagnostic application of operational criteria in studies of psychotic illness. Development and reliability of the OPCRIT system. Arch. Gen. Psychiatry 48, 764–770 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    Source link