[ad_1]

  • Liu, F. et al. A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet. 8, e1002932 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paternoster, L. et al. Genome-wide association study of three-dimensional facial morphology identifies a variant in PAX3 associated with nasion position. Am. J. Hum. Genet. 90, 478–485 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adhikari, K. et al. A genome-wide association study identifies multiple loci for variation in human ear morphology. Nat. Commun. 6, 7500 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Adhikari, K. et al. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation. Nat. Commun. 7, 11616 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cole, J. B. et al. Genomewide association study of African children identifies association of SCHIP1 and PDE8A with facial size and shape. PLoS Genet. 12, e1006174 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 48, 709–717 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaffer, J. R. et al. Genome-wide association study reveals multiple loci influencing normal human facial morphology. PLoS Genet. 12, e1006149 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, M. K. et al. Genome-wide association study of facial morphology reveals novel associations with FREM1 and PARK2. PLoS One 12, e0176566 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cha, S. et al. Identification of five novel genetic loci related to facial morphology by genome-wide association studies. BMC Genomics 19, 481 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Claes, P. et al. Genome-wide mapping of global-to-local genetic effects on human facial shape. Nat. Genet. 50, 414–423 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crouch, D. J. M. et al. Genetics of the human face: identification of large-effect single gene variants. Proc. Natl Acad. Sci. USA 115, E676–E685 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiao, L. et al. Genome-wide variants of Eurasian facial shape differentiation and a prospective model of DNA based face prediction. J. Genet. Genomics 45, 419–432 (2018).

    PubMed 

    Google Scholar
     

  • Li, Y. et al. EDAR, LYPLAL1, PRDM16, PAX3, DKK1, TNFSF12, CACNA2D3, and SUPT3H gene variants influence facial morphology in a Eurasian population. Hum. Genet. 138, 681–689 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, W. et al. Whole-exome sequencing identified four loci influencing craniofacial morphology in northern Han Chinese. Hum. Genet. 138, 601–611 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong, Z. et al. Novel genetic loci affecting facial shape variation in humans. eLife 8, e49898 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y. et al. A genome-wide association study of facial morphology identifies novel genetic loci in Han Chinese. J. Genet. Genomics 48, 198–207 (2021).

    PubMed 

    Google Scholar
     

  • Bonfante, B. et al. A GWAS in Latin Americans identifies novel face shape loci, implicating VPS13B and a Denisovan introgressed region in facial variation. Sci. Adv. 7, eabc6160 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, J. D. et al. Insights into the genetic architecture of the human face. Nat. Genet. 53, 45–53 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Guo, J. et al. Variation and signatures of selection on the human face. J. Hum. Evol. 75, 143–152 (2014).

    PubMed 

    Google Scholar
     

  • Li, J. & Ji, L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity (Edinb.) 95, 221–227 (2005).

    CAS 

    Google Scholar
     

  • Kanai, M., Tanaka, T. & Okada, Y. Empirical estimation of genome-wide significance thresholds based on the 1000 Genomes Project data set. J. Hum. Genet. 61, 861–866 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stouffer, S. A., Suchman, E. A., De Vinney. L. C., Star, S. A. & Williams, R. M. Jr. The American Soldier: Adjustment During Army Life (Wiley, 1965).

  • Genomes Project, C. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).


    Google Scholar
     

  • McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, E. M. et al. GREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approach. Bioinformatics 31, 2601–2606 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilderman, A., VanOudenhove, J., Kron, J., Noonan, J. P. & Cotney, J. High-resolution epigenomic atlas of human embryonic craniofacial development. Cell Rep. 23, 1581–1597 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Som, P. M. & Naidich, T. P. Illustrated review of the embryology and development of the facial region, part 2: late development of the fetal face and changes in the face from the newborn to adulthood. AJNR Am. J. Neuroradiol. 35, 10–18 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staley, J. R. et al. PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics 32, 3207–3209 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. R. et al. Population genetic differentiation of height and body mass index across Europe. Nat. Genet. 47, 1357–1362 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gautier, M., Klassmann, A. & Vitalis, R. rehh 2.0: a reimplementation of the R package rehh to detect positive selection from haplotype structure. Mol. Ecol. Resour. 17, 78–90 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Choi, S. W., Mak, T. S. & O’Reilly, P. F. Tutorial: a guide to performing polygenic risk score analyses. Nat. Protoc. 15, 2759–2772 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, X. et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329, 75–78 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, M. K. et al. The T-box transcription factor Tbx15 is required for skeletal development. Mech. Dev. 122, 131–144 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Lausch, E. et al. TBX15 mutations cause craniofacial dysmorphism, hypoplasia of scapula and pelvis, and short stature in Cousin syndrome. Am. J. Hum. Genet. 83, 649–655 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, H. L., Clouthier, D. E. & Artinger, K. B. Redundant roles of PRDM family members in zebrafish craniofacial development. Dev. Dyn. 242, 67–79 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Kamberov, Y. G. et al. Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell 152, 691–702 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, J. et al. The adaptive variant EDARV370A is associated with straight hair in East Asians. Hum. Genet. 132, 1187–1191 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Shaffer, J. R. et al. Multiethnic GWAS reveals polygenic architecture of earlobe attachment. Am. J. Hum. Genet. 101, 913–924 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaudet, P., Livstone, M. S., Lewis, S. E. & Thomas, P. D. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinform. 12, 449–462 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. et al. Isolated cleft palate in mice with a targeted mutation of the LIM homeobox gene lhx8. Proc. Natl Acad. Sci. USA 96, 15002–15006 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haenig, C. et al. Interactome mapping provides a network of neurodegenerative disease proteins and uncovers widespread protein aggregation in affected brains. Cell Rep. 32, 108050 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Astuti, D. et al. Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nat. Genet. 44, 277–284 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Albers, P. K. & McVean, G. Dating genomic variants and shared ancestry in population-scale sequencing data. PLoS Biol. 18, e3000586 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, J. et al. Global genetic differentiation of complex traits shaped by natural selection in humans. Nat. Commun. 9, 1865 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, Y. et al. A probabilistic method for testing and estimating selection differences between populations. Genome Res 25, 1903–1909 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaidi, A. A. et al. Investigating the case of human nose shape and climate adaptation. PLoS Genet. 13, e1006616 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delaneau, O., Marchini, J. & Zagury, J. F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–81 (2011).

    PubMed 

    Google Scholar
     

  • Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, J. D. et al. MeshMonk: Open-source large-scale intensive 3D phenotyping. Sci. Rep. 9, 6085 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Robust genome-wide ancestry inference for heterogeneous datasets: illustrated using the 1,000 genome project with 3D facial images. Sci. Rep. 10, 11850 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rencher, A. C. & Christensen, W. F. Methods of Multivariate Analysis. (John Wiley & Sons, Inc., 2012). https://doi.org/10.1002/9781118391686

  • Olson, C. L. On choosing a test statistic in multivariate analysis of variance. Psychol. Bull. 83, 579–586 (1976).


    Google Scholar
     

  • Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Navarro Gonzalez, J. et al. The UCSC Genome Browser database: 2021 update. Nucleic Acids Res. 49, D1046–D1057 (2021).

    PubMed 

    Google Scholar
     

  • Ward, L. D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–4 (2012).

    CAS 

    Google Scholar
     

  • Aken, B. L. The Ensembl gene annotation system. Database (Oxford) 2016, baw093 (2016).


    Google Scholar
     

  • Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    CAS 

    Google Scholar
     

  • Carithers, L. J. & Moore, H. M. The Genotype-Tissue Expression (GTEx) Project. Biopreserv. Biobank. 13, 307–308 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keen, J. C. & Moore, H. M. The Genotype-Tissue Expression (GTEx) project: linking clinical data with molecular analysis to advance personalized medicine. J. Pers. Med. 5, 22–29 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    Source link