[ad_1]

  • Chalhoub, B. et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950–953 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Prakash, S., Wu, X.-M. & Bhat, S. R. in Plant Breeding Reviews Vol. 35 (ed. Janick, J.) Ch. 2 (John Wiley & Sons, 2011).

  • Lu, K. et al. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat. Commun. 10, 1154 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bus, A., Korber, N., Snowdon, R. J. & Stich, B. Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theor. Appl. Genet. 123, 1413–1423 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, D. D. et al. Exploring the gene pool of Brassica napus by genomic-based approaches. Plant Biotechnol. J. 19, 1693–1712 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, D. Y. et al. A genome-wide survey with different rapeseed ecotypes uncovers footprints of domestication and breeding. J. Exp. Bot. 68, 4791–4801 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, D. Z. et al. Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Mol. Plant 12, 30–43 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Song, J. M. et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6, 34–35 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • An, H. et al. Transcriptome and organellar sequencing highlights the complex origin and diversification of allotetraploid Brassica napus. Nat. Commun. 10, 2878 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, F. et al. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat. Genet. 48, 1218–1224 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Clark, R. M. et al. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317, 338–342 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhou, Z. K. et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33, 408–414 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yano, K. et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat. Genet. 48, 927–934 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yang, J. H. et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat. Genet. 48, 1225–1232 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Qian, L. W. et al. Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus. BMC Genomics 15, 1170 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, L. W. et al. Deletion of a stay-green gene associates with adaptive selection in Brassica napus. Mol. Plant 9, 1559–1569 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shi, J. Q. et al. Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Sci. Rep. 5, 14481 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, W. et al. Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front. Plant Sci. 7, 17 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, K. et al. Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in Brassica napus. Front. Plant Sci. 8, 206 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nour-Eldin, H. H. et al. Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters. Nat. Biotechnol. 35, 377–382 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang, B. et al. Dissection of the genetic architecture of three seed-quality traits and consequences for breeding in Brassica napus. Plant Biotechnol. J. 16, 1336–1348 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, Z. D. et al. Genome- and transcriptome-wide association studies reveal the genetic basis and the breeding history of seed glucosinolate content in Brassica napus. Plant Biotechnol. J. 20, 211–225 (2022).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y. H. & Li, J. Y. Molecular basis of plant architecture. Annu. Rev. Plant Biol. 59, 253–279 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hu, J. H. et al. Auxin-related genes associated with leaf petiole angle at the seedling stage are involved in adaptation to low temperature in Brassica napus. Environ. Exp. Bot. 182, 104308 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Chen, Y. N. et al. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol. J. 10, 139–149 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc. Natl Acad. Sci. USA 112, E5123–E5132 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, J. Q. et al. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182, 851–861 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, L. et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat. Genet. 49, 1089–1098 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Luo, Z. et al. Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theor. Appl. Genet. 130, 1569–1586 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radoev, M. et al. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179, 1547–1548 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. The Arabidopsis chloroplast ribosome recycling factor is essential for embryogenesis and chloroplast biogenesis. Plant Mol. Biol. 74, 47–59 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • King, S. P. et al. Carbohydrate content and enzyme metabolism in developing canola siliques. Plant Physiol. 114, 153–160 (1997).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bennett, E. J. et al. The role of the pod in seed development: strategies for manipulating yield. New Phytol. 190, 838–853 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kondra, Z. & Stefansson, B. Inheritance of the major glucosinolates of rapeseed (Brassica napus) meal. Can. J. Plant. Sci. 50, 643–647 (1970).

    CAS 
    Article 

    Google Scholar
     

  • Wu, G. et al. Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theor. Appl. Genet. 116, 491–499 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang, N. et al. A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol. 180, 751–765 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jiang, C. C. et al. Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.). Theor. Appl. Genet. 127, 957–968 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tang, S. et al. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Mol. Plant 14, 470–487 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fu, W. F. et al. Acyl-CoA N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton. Sci. Rep. 5, 11790 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, L. X., Long, Y., Li, H. & Wu, X. M. Comparative transcriptome analysis reveals key pathways and hub genes in rapeseed during the early stage of Plasmodiophora brassicae infection. Front. Genet. 10, 1275 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurgobin, B. et al. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol. J. 16, 1265–1274 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, J. et al. Genetic control of rice plant architecture under domestication. Nat. Genet. 40, 1365–1369 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li, F. et al. A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci. 242, 169–177 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. A 2.833-kb insertion in BnFLC.A2 and its homeologous exchange with BnFLC.C2 during breeding selection generated early-flowering rapeseed. Mol. Plant 11, 222–225 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zheng, M. et al. Knockout of two BnaMAX1 homologs by CRISPR/Cas9- targeted mutagenesis improves plant architecture and increase yield in rapeseed (Brassica napus L.). Plant Biotechnol. J. 18, 644–654 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chen, B. Y. et al. Evaluation yield agronomic traits and their genetic variation in 488 global collections of Brassica napus L. Genet. Resour. Crop Evol. 61, 979–999 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Murray, M. & Thomspin, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4326 (1980).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, L. X. et al. A genome-wide association study reveals new loci for resistance to clubroot disease in Brassica napus. Front. Plant Sci. 7, 1483 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mckenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vilella, A. J. et al. EnsemblCompara genetrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19, 327–335 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Pickrell, J. K. & Pitchard, J. K. Inference of population splits and mixtures from genone-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, H., Patterson, N. & Reich, D. Population differentiation as a test for selective sweeps. Genome Res. 20, 393–402 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alachiotis, N., Stamatakis, A. & Pavlidis, P. OmegaPlus: a scalable tool for rapid detection of selective sweeps in whole-genome datasets. Bioinformatics 28, 2274–2275 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhou, X. & Matthew, S. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, C. et al. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol. 18, 161 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, T. et al. Biased gene retention during diploidization in Brassica linked to 3D genome organization. Nat. Plants 5, 822–832 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, P. et al. An RNA-seq transcriptome analysis of floral buds of an interspecific Brassica hybrid between B. carinata and B. napus. Plant Reprod. 27, 225–237 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yong, H. Y. et al. Comparative transcriptome analysis of leaves and roots in response to sudden increase inn salinity in Brassica napus by RNA-seq. BioMed. Res. Int. 27, 225–237 (2014).


    Google Scholar
     

  • Miao, L. Y. et al. Transcriptome analysis of stem and globally comparison with other tissues in Brassica napus. Front. Plant Sci. 7, 1403 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, H. et al. Time-series analyses of transcriptomes and proteomes reveal molecular networks underlying oil accumulation in canola. Front. Plant Sci. 7, 2007 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, F. M. et al. The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J. 92, 452–468 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ye, J. et al. An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). BMC Plant Biol. 18, 71 (2017).


    Google Scholar
     

  • Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, C. et al. An efficient Agrobacterium-mediated transformation method using hypocotyl as explants for Brassica napus. Mol. Breed. 40, 96 (2020).

    CAS 
    Article 

    Google Scholar
     

  • [ad_2]

    Source link