[ad_1]

  • Liebman, B. Nutritional aspects of fruit. Nutrition Action Healthletter 1, 10–11 (1992).

  • Chandrika, U. G., Jansz, E. R., Wickramasinghe, S. M. D. N. & Warnasuriya, N. D. Carotenoids in yellow- and red-fleshed papaya (Carica papaya L). J. Sci. Food Agric. 83, 1279–1282 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Fuentes, G. & Santamaría, J. M. in Genetics and Genomics of Papaya (eds Ming, R. & Moore, P. H.) 3–15 (Springer, 2014).

  • Manshardt, R. in Genetics and Genomics of Papaya (eds Ming, R. & Moore, P. H.) 95–113 (Springer, 2014).

  • Liu, Z. et al. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427, 348–352 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, J. et al. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc. Natl Acad. Sci. USA 109, 13710–13715 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • VanBuren, R. et al. Origin and domestication of papaya Yh chromosome. Genome Res. 25, 524–533 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gonsalves, D. Control of papaya ringspot virus in papaya: a case study. Annu. Rev. Phytopathol. 36, 415–437 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Manshardt, R. UH Rainbow’ Papaya. Germplasm, G-1 (University of Hawaii College of Tropical Agriculture and Human Resources, 1998).

  • Fitch, M. M., Manshardt, R. M., Gonsalves, D., Slightom, J. L. & Sanford, J. C. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Nat. Biotechnol. 10, 1466–1472 (1992).

    CAS 
    Article 

    Google Scholar
     

  • Fitch, M. M., Manshardt, R. M., Gonsalves, D., Slightom, J. L. & Sanford, J. C. Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep. 9, 189–194 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Kawakatsu, T., Kawahara, Y., Itoh, T. & Takaiwa, F. A whole-genome analysis of a transgenic rice seed-based edible vaccine against cedar pollen allergy. DNA Res. 20, 623–631 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Suzuki, J. Y. et al. Characterization of insertion sites in Rainbow papaya, the first commercialized transgenic fruit crop. Tropical Plant Biol. 1, 293–309 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Ming, R. et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452, 991–996 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, X., Zhang, S., Zhao, Q., Ming, R. & Tang, H. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat. Plants 5, 833–845 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Na, J. K. et al. Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genom. 13, 176 (2012).

  • Zhou, L., Christopher, D. A. & Paull, R. E. Defoliation and fruit removal effects on papaya fruit production, sugar accumulation, and sucrose metabolism. J. Am. Soc. Hortic. Sci. 125, 644–652 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Klein, T. M., Wolf, E. D., Wu, R. & Sanford, J. C. High-velocity microprojectiles for delivering nucleic acids into living cells. Biotechnology 24, 384–386 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Hirochika, H. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12, 2521–2528 (1993).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hirochika, H. Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol. Biol. 35, 231–240 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lisch, D. How important are transposons for plant evolution? Nat. Rev. Genet. 14, 49–61 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Miguel, C. & Marum, L. An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J. Exp. Bot. 62, 3713–3725 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen, S. et al. Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J. 36, 105–113 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sawasaki, T., Takahashi, M., Goshima, N. & Morikawa, H. Structures of transgene loci in transgenic Arabidopsis plants obtained by particle bombardment: junction regions can bind to nuclear matrices. Gene 218, 27–35 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stegemann, S., Hartmann, S., Ruf, S. & Bock, R. High-frequency gene transfer from the chloroplast genome to the nucleus. Proc. Natl Acad. Sci. USA 100, 8828–8833 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma, H. et al. High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 166, 419–436 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lin, T. et al. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46, 1220–1226 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun, X. et al. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat. Genet. 52, 1423–1432 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu, G. A. et al. Genomics of the origin and evolution of Citrus. Nature 554, 311–316 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zerpa-Catanho, D., Zhang, X., Song, J., Hernandez, A. G. & Ming, R. Ultra-long DNA molecule isolation from plant nuclei for ultra-long read genome sequencing. STAR Protoc. 2, 100343 (2021).

  • Xie, T. et al. De novo plant genome assembly based on chromatin interactions: a case study of Arabidopsis thaliana. Mol. Plant 8, 489–492 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, X. et al. Genomes of the Banyan tree and pollinator wasp provide insights into fig–wasp coevolution. Cell 183, 875–889 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

  • Tamazian, G. et al. Chromosomer: a reference-based genome arrangement tool for producing draft chromosome sequences. Gigascience 5, 38 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bao, Z. & Eddy, S. R. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 12, 1269–1276 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abrusán, G., Grundmann, N., DeMester, L. & Makalowski, W. TEclass–a tool for automated classification of unknown eukaryotic transposable elements. Bioinformatics 25, 1329–1330 (2009).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yang, X. & Li, L. miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27, 2614–2615 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buels, R. et al. JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol. 17, 66 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marçais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Brown, J. E., Bauman, J. M., Lawrie, J. F., Rocha, O. J. & Moore, R. C. The structure of morphological and genetic diversity in natural populations of Carica papaya (Caricaceae) in Costa Rica. Biotropica 44, 179–188 (2012).

    Article 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • VanBuren, R. et al. Extremely low nucleotide diversity in the X-linked region of papaya caused by a strong selective sweep. Genome Biol. 17, 230 (2016).

  • Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Lee, T.-H., Guo, H., Wang, X., Kim, C. & Paterson, A. H. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genom. 15, 162 (2014).

    Article 

    Google Scholar
     

  • Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, L. Y. et al. The bracteatus pineapple genome and domestication of clonally propagated crops. Nat. Genet. 51, 1549–1558 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cockerham, C. C. & Weir, B. S. Covariances of relatives stemming from a population undergoing mixed self and random mating. Biometrics 40, 157–164 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • [ad_2]

    Source link