[ad_1]

  • Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, E. & Zhang, Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 6, a019133 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, S., Meletis, K., Fu, D., Jhaveri, S. & Jaenisch, R. Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan. Dev. Dyn. 236, 1663–1676 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Lavery, L. A. et al. Losing dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome. eLife 9, 1–27 (2020).


    Google Scholar
     

  • Christian, D. et al. DNMT3A haploinsufficiency results in behavioral deficits and global epigenomic dysregulation shared across neurodevelopment disorders. Cell Rep. 33, 108416 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ley, T. J. et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2433 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L., Rau, R. & Goodell, M. A. DNMT3A in haematological malignancies. Nat. Rev. Cancer 15, 152–165 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tatton-Brown, K. et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat. Genet. 46, 385–388 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heyn, P. et al. Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of Polycomb-regulated regions. Nat. Genet. 51, 96–105 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Otani, J. et al. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep. 10, 1235–1241 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, X. et al. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 517, 640–644 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Dhayalan, A. et al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J. Biol. Chem. 285, 26114–26120 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Weinberg, D. N. et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281–286 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, T., Ueda, Y., Xie, S. & Li, E. A novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its expression correlates with active de novo methylation. J. Biol. Chem. 277, 38746–38754 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, T., Ueda, Y., Dodge, J. E., Wang, Z. & Li, E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell. Biol. 23, 5594–5605 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, J., Chang, H., Li, E. & Fan, G. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J. Neurosci. Res. 79, 734–746 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, H. et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329, 444–447 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, T. et al. DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biol. 19, 88 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manzo, M. et al. Isoform‐specific localization of DNMT3A regulates DNA methylation fidelity at bivalent CpG islands. EMBO J. 36, 3421–3434 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, J. et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. 13, 423–430 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radivojac, P. et al. Intrinsic disorder and functional proteomics. Biophys. J. 92, 1439–1456 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optodroplets. Cell 168, 159–171.e14 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. H. et al. MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature 586, 440–444 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, M. et al. Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat. Genet. 46, 17–23 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Stroud, H. et al. Early-life gene expression in neurons modulates lasting epigenetic states. Cell 171, 1151–1164.e16 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Dnmt3a knockout in excitatory neurons impairs postnatal synapse maturation and is partly compensated by repressive histone modification H3K27me3. Preprint at bioRxiv https://doi.org/10.1101/2019.12.20.883694 (2021).

  • Sendžikaitė, G., Hanna, C. W., Stewart-Morgan, K. R., Ivanova, E. & Kelsey, G. A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and growth retardation in mice. Nat. Commun. 10, 1884 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Large DNA methylation nadirs anchor chromatin loops maintaining hematopoietic stem cell identity. Mol. Cell 78, 506–521 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Endoh, M. et al. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development 135, 1513–1524 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Weinberg, D. N. et al. Two competing mechanisms of DNMT3A recruitment regulate the dynamics of de novo DNA methylation at PRC1-targeted CpG islands. Nat. Genet. 53, 794–800 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viré, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    PubMed 

    Google Scholar
     

  • Neri, F. et al. Dnmt3L antagonizes DNA methylation at bivalent promoters and favors DNA methylation at gene bodies in ESCs. Cell 155, 121–134 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunetti, L., Gundry, M. C. & Goodell, M. A. DNMT3A in leukemia. Cold Spring Harb. Perspect. Med. 7, a030320 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishiyama, A. et al. Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature 502, 249–253 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Qin, W. et al. DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination. Cell Res. 25, 911–929 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuks, F., Burgers, W. A., Godin, N., Kasai, M. & Kouzarides, T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J. 20, 2536–2544 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hata, K., Okano, M., Lei, H. & Li, E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 1983–1993 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, J.-Y. et al. Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol. Cell. Biol. 27, 8748–8759 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, Y. et al. MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a. Nat. Commun. 2, 533 (2011).

    PubMed 

    Google Scholar
     

  • Palamarchuk, A. et al. Tcl1 protein functions as an inhibitor of de novo DNA methylation in B-cell chronic lymphocytic leukemia (CLL). Proc. Natl Acad. Sci. USA 109, 2555–2560 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alberti, S. et al. A user’s guide for phase separation assays with purified proteins. J. Mol. Biol. 430, 4806–4820 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq – A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xi, Y. & Li, W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10, 232 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, D. et al. MOABS: Model based analysis of bisulfite sequencing data. Genome Biol. 15, R38 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jühling, F. et al. metilene: Fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. Genome Res. 26, 256–262 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    Source link